Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00221325" target="_blank" >RIV/68407700:21230/14:00221325 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-662-45483-1_7" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-662-45483-1_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-45483-1_7" target="_blank" >10.1007/978-3-662-45483-1_7</a>
Alternative languages
Result language
angličtina
Original language name
Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows
Original language description
This paper proposes a novel approach that enables the construction models for predicting task?s running-times of data-intensive scientific workflows. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. The proposed approach has been tested on Bioinformatics workflows for Gene Expressions Analysis over homogeneous and heterogeneous computing environments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/MEB111005" target="_blank" >MEB111005: Data Mining over Distribute Computing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
High Performance Computing
ISBN
978-3-662-45482-4
ISSN
1865-0929
e-ISSN
—
Number of pages
15
Pages from-to
83-97
Publisher name
Springer
Place of publication
Heidelberg
Event location
Valparaíso
Event date
Oct 20, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000345074900007