All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00221325" target="_blank" >RIV/68407700:21230/14:00221325 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-662-45483-1_7" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-662-45483-1_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-45483-1_7" target="_blank" >10.1007/978-3-662-45483-1_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows

  • Original language description

    This paper proposes a novel approach that enables the construction models for predicting task?s running-times of data-intensive scientific workflows. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. The proposed approach has been tested on Bioinformatics workflows for Gene Expressions Analysis over homogeneous and heterogeneous computing environments.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/MEB111005" target="_blank" >MEB111005: Data Mining over Distribute Computing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    High Performance Computing

  • ISBN

    978-3-662-45482-4

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    83-97

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Valparaíso

  • Event date

    Oct 20, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000345074900007