All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feature Selection for Performance Estimation of Machine Learning Workflows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00579589" target="_blank" >RIV/67985807:_____/23:00579589 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-33258-6_33" target="_blank" >https://doi.org/10.1007/978-3-031-33258-6_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-33258-6_33" target="_blank" >10.1007/978-3-031-33258-6_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feature Selection for Performance Estimation of Machine Learning Workflows

  • Original language description

    Performance prediction of machine learning models can speed up automated machine learning procedures and it can be also incorporated into model recommendation algorithms. We propose a meta-learning framework that utilizes information about previous runs of machine learning workflows on benchmark tasks. We extract features describing the workflows and meta-data about tasks, and combine them to train a regressor for performance prediction. This way, we obtain the model performance prediction without any training, just by means of feature extraction and inference via the regressor. The approach is tested on OpenML-CC18 Curated Classification benchmark estimating the 75th percentile value of area under the ROC curve (AUC) of the classifiers. We were able to obtain consistent predictions with $$R^2$$ score of 0.8 for previously unseen data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    International Conference on Information Technology and Systems: ICITS 2023, Volume 1

  • ISBN

    978-3-031-33257-9

  • ISSN

    2367-3370

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    351-359

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Cusco

  • Event date

    Apr 24, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article