Enhancing Diagnostic Precision in Dyslexia : Introducing the DYSLEX Platform
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F24%3A00139824" target="_blank" >RIV/00216224:14210/24:00139824 - isvavai.cz</a>
Result on the web
<a href="https://65wa.icet2024.org/" target="_blank" >https://65wa.icet2024.org/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Enhancing Diagnostic Precision in Dyslexia : Introducing the DYSLEX Platform
Original language description
The presentation, explores an innovative approach to diagnosing dyslexia using eye-tracking technology and artificial intelligence. Utilizing eye-tracking devices and AI algorithms, the research differentiates between dyslexic and non-dyslexic readers, offering a more objective and precise diagnostic method. The findings demonstrate that deep learning models, such as multilayer perceptrons and residual neural networks, can achieve approximately 90% accuracy in classifying dyslexia. The study underscores the potential of AI in transforming traditional diagnostic processes and highlights future steps towards digitizing dyslexia diagnosis in collaboration with psychological counseling centers.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Result continuities
Project
<a href="/en/project/TL05000177" target="_blank" >TL05000177: Diagnostics of dyslexia using eye-tracking and artificial intelligence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů