Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F00%3A00002564" target="_blank" >RIV/00216224:14310/00:00002564 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard operators
Original language description
This paper demonstrates the power of the calculus developed in the two previous parts of the series for all real forms of the almost Hermitian symmetric structures on smooth manifolds, including e.g. conformal Riemannian and almost quaternionic geometries. We give explicit formulae for distinguished invariant curved analogues of the standard operators in terms of the linear connections belonging to the structures in question, so in particular we prove their existence. Moreover, these formulae are universal for all geometries in question.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F96%2F0310" target="_blank" >GA201/96/0310: Geometric structures and invariant operators</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
34
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—