First order invariant differential operators for parabolic geometries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F00%3A00003437" target="_blank" >RIV/00216224:14310/00:00003437 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
First order invariant differential operators for parabolic geometries
Original language description
The goal of this paper is to describe explicitly all invariant first order operators on manifolds equipped with parabolic geometries. Both the results and the methods present an essential generalization of Fegan's description of the first order invariantoperators on conformal Riemannian manifolds. On the way to the results, we present a short survey on basic structures and properties of parabolic geometries, together with links to further literature.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0675" target="_blank" >GA201/99/0675: Geometric and topological structures in mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Seminaires & Congres
ISBN
2-85629-094-9
ISSN
—
e-ISSN
—
Number of pages
25
Pages from-to
—
Publisher name
French Math. Soc.
Place of publication
France
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—