All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

First order invariant differential operators for parabolic geometries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F00%3A00003437" target="_blank" >RIV/00216224:14310/00:00003437 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    First order invariant differential operators for parabolic geometries

  • Original language description

    The goal of this paper is to describe explicitly all invariant first order operators on manifolds equipped with parabolic geometries. Both the results and the methods present an essential generalization of Fegan's description of the first order invariantoperators on conformal Riemannian manifolds. On the way to the results, we present a short survey on basic structures and properties of parabolic geometries, together with links to further literature.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F99%2F0675" target="_blank" >GA201/99/0675: Geometric and topological structures in mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2000

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Seminaires & Congres

  • ISBN

    2-85629-094-9

  • ISSN

  • e-ISSN

  • Number of pages

    25

  • Pages from-to

  • Publisher name

    French Math. Soc.

  • Place of publication

    France

  • Event location

  • Event date

  • Type of event by nationality

  • UT code for WoS article