Bifurcation diagram of a cubic three-parameter autonomous system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00031580" target="_blank" >RIV/00216224:14310/05:00031580 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bifurcation diagram of a cubic three-parameter autonomous system
Original language description
We study a cubic three-parameter autonomous planar system. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldors assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation). We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electron. J. Diff. Eqs.
ISSN
1072-6691
e-ISSN
—
Volume of the periodical
2005
Issue of the periodical within the volume
No. 83
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—