All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Holonomy groups of Lorentzian manifolds: classification, examples, and applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00050991" target="_blank" >RIV/00216224:14310/08:00050991 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4171/051" target="_blank" >http://dx.doi.org/10.4171/051</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/051" target="_blank" >10.4171/051</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Holonomy groups of Lorentzian manifolds: classification, examples, and applications

  • Original language description

    We review recent developments in the theory of Lorentzian holonomy groups focussing on the classification results. We present the list of indecomposable, nonirreducible Lorentzian holonomy groups, explain the idea of its proof, and describe a method of constructing metrics which realise all the possible groups. This method is then used to construct many examples of metrics. Finally, we give some applications for the existence of parallel spinors and a short outlook on other signatures. As a new result we obtain the holonomy classification for indecomposable, non-irreducible Lorentzian Einstein spaces.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Recent developments in pseudo-Riemannian geometry

  • ISBN

    978-3-03719-051-7

  • Number of pages of the result

    45

  • Pages from-to

    53-97

  • Number of pages of the book

    538

  • Publisher name

    European Mathematical Society

  • Place of publication

    Vienna, Austria

  • UT code for WoS chapter