Geometry and holonomy of indecomposable cones
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021040" target="_blank" >RIV/62690094:18470/23:50021040 - isvavai.cz</a>
Result on the web
<a href="https://ems.press/journals/rmi/articles/4771229" target="_blank" >https://ems.press/journals/rmi/articles/4771229</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RMI/1330" target="_blank" >10.4171/RMI/1330</a>
Alternative languages
Result language
angličtina
Original language name
Geometry and holonomy of indecomposable cones
Original language description
We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non-irreducible cones. The latter admit a parallel distribution of null k-planes, and we study the cases k = 1 in detail. We give structure theorems about the base manifold and in the case when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in so(1, n - 1).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
REVISTA MATEMATICA IBEROAMERICANA
ISSN
0213-2230
e-ISSN
2235-0616
Volume of the periodical
39
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
37
Pages from-to
1105-1141
UT code for WoS article
001022383100010
EID of the result in the Scopus database
2-s2.0-85164603562