All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geometry and holonomy of indecomposable cones

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021040" target="_blank" >RIV/62690094:18470/23:50021040 - isvavai.cz</a>

  • Result on the web

    <a href="https://ems.press/journals/rmi/articles/4771229" target="_blank" >https://ems.press/journals/rmi/articles/4771229</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/RMI/1330" target="_blank" >10.4171/RMI/1330</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geometry and holonomy of indecomposable cones

  • Original language description

    We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non-irreducible cones. The latter admit a parallel distribution of null k-planes, and we study the cases k = 1 in detail. We give structure theorems about the base manifold and in the case when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in so(1, n - 1).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    REVISTA MATEMATICA IBEROAMERICANA

  • ISSN

    0213-2230

  • e-ISSN

    2235-0616

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    37

  • Pages from-to

    1105-1141

  • UT code for WoS article

    001022383100010

  • EID of the result in the Scopus database

    2-s2.0-85164603562