Cones over pseudo-Riemannian manifolds and their holonomy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00036930" target="_blank" >RIV/00216224:14310/09:00036930 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Cones over pseudo-Riemannian manifolds and their holonomy
Original language description
By a classical theorem of Gallot (1979), a Riemannian cone over a complete Riemannian manifold is either flat or has irreducible holonomy. We consider metric cones with reducible holonomy over pseudo-Riemannian manifolds. First we describe the local structure of the base of the cone when the holonomy of the cone is decomposable. For instance, we find that the holonomy algebra of the base is always the full pseudo-orthogonal Lie algebra. One of the global results is that a cone over a compact and complete pseudo-Riemannian manifold is either flat or has indecomposable holonomy. Then we analyse the case when the cone has indecomposable but reducible holonomy, which means that it admits a parallel isotropic distribution. This analysis is carried out, first in the case where the cone admits two complementary distributions and, second for Lorentzian cones. We show that the first case occurs precisely when the local geometry of the base manifold is para-Sasakian and that of the cone is para-
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal für die reine und angewandte Mathematik
ISSN
0075-4102
e-ISSN
—
Volume of the periodical
2009
Issue of the periodical within the volume
635
Country of publishing house
DE - GERMANY
Number of pages
47
Pages from-to
—
UT code for WoS article
000270732200002
EID of the result in the Scopus database
—