How to Find the Holonomy Algebra of a Lorentzian Manifold
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50003367" target="_blank" >RIV/62690094:18470/15:50003367 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs11005-014-0741-y" target="_blank" >http://link.springer.com/article/10.1007%2Fs11005-014-0741-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11005-014-0741-y" target="_blank" >10.1007/s11005-014-0741-y</a>
Alternative languages
Result language
angličtina
Original language name
How to Find the Holonomy Algebra of a Lorentzian Manifold
Original language description
Manifolds with exceptional holonomy play an important role in string theory, supergravity and M-theory. It is explained how one can find the holonomy algebra of an arbitrary Riemannian or Lorentzian manifold. Using the de Rham and Wu decompositions, thisproblem is reduced to the case of locally indecomposable manifolds. In the case of locally indecomposable Riemannian manifolds, it is known that the holonomy algebra can be found from the analysis of special geometric structures on the manifold. If theholonomy algebra of a locally indecomposable Lorentzian manifold (M, g) of dimension n is different from , then it is contained in the similitude algebra . There are four types of such holonomy algebras. Criterion to find the type of is given, and special geometric structures corresponding to each type are described. To each there is a canonically associated subalgebra . An algorithm to find is provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in mathematical physics
ISSN
0377-9017
e-ISSN
—
Volume of the periodical
105
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
199-219
UT code for WoS article
000348355500003
EID of the result in the Scopus database
—