Weak maximum principle and accessory problem for control problems on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00028459" target="_blank" >RIV/00216224:14310/09:00028459 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weak maximum principle and accessory problem for control problems on time scales
Original language description
In this paper we derive the first and second variations for a nonlinear time scale optimal control problem with control and state-endpoints equality constraints. Using the first variation, a first order necessary condition for weak local optimality is obtained under the form of a weak maximum principle generalizing the Dubois-Reymond Lemma to the optimal control setting and time scales. A second order necessary condition in terms of the accessory problem is derived by using the nonnegativity of the second variation at all admissible directions. The control problem is studied under a controllability assumption, and with or without the shift in the state variable. These two forms of the problem are shown to be equivalent.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
000264691300020
EID of the result in the Scopus database
—