Picone type identities and definiteness of quadratic functionals on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00028640" target="_blank" >RIV/00216224:14310/09:00028640 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Picone type identities and definiteness of quadratic functionals on time scales
Original language description
In this paper we derive a new sufficient condition for the nonnegativity of time scale quadratic functionals associated to time scale symplectic systems. To establish this result, a new global Picone formula is derived. Another proof of a special case ofthe result is shown to be obtained via a Sturmian comparison technique. Furthermore, we derive several new Picone type identities which, in particular, do not impose a certain delta-differentiability assumption, and we survey known ones from the literature. The results in this paper complete our earlier work on the definiteness of a time scale quadratic functional in terms of its corresponding time scale symplectic system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
215
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
—
UT code for WoS article
000271640200004
EID of the result in the Scopus database
—