Generalized geometrical structures of odd dimensional manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00029195" target="_blank" >RIV/00216224:14310/09:00029195 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized geometrical structures of odd dimensional manifolds
Original language description
We define an almost cosymplectic contact structure which generalizes cosymplectic and contact structures of an odd dimensional manifold. Analogously, we define an almost coPoisson Jacobi structure which generalizes a Jacobi structure. Moreover, we studyrelations between these structures and analyse the associated algebras of functions. As examples of the above structures, we present geometrical dynamical structures of the phase space of a general relativistic particle, regarded as the 1st jet space ofmotions in a spacetime. We describe geometric conditions by which a metric and a connection of the phase space yield cosymplectic and dual coPoisson structures, in case of a spacetime with absolute time (a Galilei spacetime), or almost cosymplectic contact and dual almost coPoisson Jacobi structures, in case of a spacetime without absolute time (an Einstein spacetime).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F0523" target="_blank" >GA201/05/0523: Geometric structures on fibered manifolds</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal de Mathematiques Pures et Appliquees
ISSN
0021-7824
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
2
Country of publishing house
FR - FRANCE
Number of pages
22
Pages from-to
—
UT code for WoS article
000264266700005
EID of the result in the Scopus database
—