Geometric structures of the classical general relativistic phase space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00024916" target="_blank" >RIV/00216224:14310/08:00024916 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Geometric structures of the classical general relativistic phase space
Original language description
This paper is concerned with basic geometric properties of the phase space of a classical general relativistic particle, regarded as the 1st jet space of motions, i.e. as the 1st jet space of timelike 1--dimensional submanifolds of spacetime. This setting allows us to skip constraints. Our main goal is to determine the geometric conditions by which the Lorentz metric and a connection of the phase space yield contact and Jacobi structures. In particular, we specialise these conditions to the cases when the connection of the phase space is generated by the metric and an additional tensor. Indeed, the case generated by the metric and the electromagnetic field is included, as well.
Czech name
Geometrické struktury klasického obecně relativistického fázového prostoru
Czech description
Článek se zabývá geometrickými vlastnostmi fázového prostoru klasické obecně-relativistické částice. Fázový prostor je chápán jako prostor 1-jetů pohybů. Hlavním cílem je určit geometrické struktury, které jsou dány Lorentzovou metrikou a fázovou konexí.Dostáváme tak podmínky pro kontaktní a Jakobiho strukturu.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F0523" target="_blank" >GA201/05/0523: Geometric structures on fibered manifolds</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Geometrical Methods in Modern Physics
ISSN
0219-8878
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
56
Pages from-to
—
UT code for WoS article
000259928300004
EID of the result in the Scopus database
—