On the characterization of infinitesimal symmetries of the relativistic phase space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057828" target="_blank" >RIV/00216224:14310/12:00057828 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/1751-8121/45/48/485205" target="_blank" >http://iopscience.iop.org/1751-8121/45/48/485205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/45/48/485205" target="_blank" >10.1088/1751-8113/45/48/485205</a>
Alternative languages
Result language
angličtina
Original language name
On the characterization of infinitesimal symmetries of the relativistic phase space
Original language description
The phase space of relativistic particle mechanics is defined as the first jet space of motions regarded as time-like one-dimensional submanifolds of spacetime. A Lorentzian metric and an electromagnetic 2-form define naturally a generalized contact structure on the odd-dimensional phase space. In the paper, infinitesimal symmetries of the phase structures are characterized. More precisely, it is proved that all phase infinitesimal symmetries are special Hamiltonian lifts of distinguished conserved quantities on the phase space. It is proved that generators of infinitesimal symmetries constitute a Lie algebra with respect to a special bracket. A momentum map for groups of symmetries of the geometric structures is provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
48
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
1-28
UT code for WoS article
000311337400010
EID of the result in the Scopus database
—