The Lie Group in Infinite Dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F11%3APU91460" target="_blank" >RIV/00216305:26110/11:PU91460 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Lie Group in Infinite Dimension
Original language description
A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the first fundamental theorem). This classical result is adjustedfor the infinite-dimensional case. We prove that the (local, C^infty smooth) action of a Lie group on infinite-dimensional space (a manifold modelled on R^infty) may be regarded as a limit of finite-dimensional approximations and the corresponding Liealgebra of vector fields may be characterized by certain finiteness requirements. The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of differential equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Abstract and Applied Analysis
ISSN
1085-3375
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
1
Country of publishing house
FK - FALKLAND ISLANDS (MALVINAS)
Number of pages
35
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—