All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sturmian and spectral theory for discrete symplectic systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00029213" target="_blank" >RIV/00216224:14310/09:00029213 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sturmian and spectral theory for discrete symplectic systems

  • Original language description

    We consider symplectic difference systems together with associated discrete quadratic functionals and eigenvalue problems. We establish Sturmian type comparison theorems for the numbers of focal points of conjoined bases of a pair of symplectic systems.Then, using this comparison result, we show that the numbers of focal points of two conjoined bases of one symplectic system differ by at most n. In the last part of the paper we prove the Rayleigh principle for symplectic eigenvalue problems and we showthat finite eigenvectors of such eigenvalue problems form a complete orthogonal basis in the space of admissible sequences.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F07%2F0145" target="_blank" >GA201/07/0145: Difference equations and dynamic equations on time scales II</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Trans. Amer. Math. Soc.

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    361

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000264881500012

  • EID of the result in the Scopus database