Sturmian and spectral theory for discrete symplectic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00029213" target="_blank" >RIV/00216224:14310/09:00029213 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Sturmian and spectral theory for discrete symplectic systems
Original language description
We consider symplectic difference systems together with associated discrete quadratic functionals and eigenvalue problems. We establish Sturmian type comparison theorems for the numbers of focal points of conjoined bases of a pair of symplectic systems.Then, using this comparison result, we show that the numbers of focal points of two conjoined bases of one symplectic system differ by at most n. In the last part of the paper we prove the Rayleigh principle for symplectic eigenvalue problems and we showthat finite eigenvectors of such eigenvalue problems form a complete orthogonal basis in the space of admissible sequences.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0145" target="_blank" >GA201/07/0145: Difference equations and dynamic equations on time scales II</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Trans. Amer. Math. Soc.
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
361
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
000264881500012
EID of the result in the Scopus database
—