Oscillation and spectral theory for symplectic difference systems with separated boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00044057" target="_blank" >RIV/00216224:14310/10:00044057 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Oscillation and spectral theory for symplectic difference systems with separated boundary conditions
Original language description
We consider symplectic difference systems involving a spectral parameter together with general separated boundary conditions. We establish the so-called oscillation theorem which relates the number of finite eigenvalues less than or equal to a given number to the number of focal points of a certain conjoined basis of the symplectic system. Then we prove Rayleigh's principle for the variational description of finite eigenvalues and we describe the space of admissible sequences by means of the (orthonormal) system of finite eigenvectors. The principle role in our treatment is played by the construction where the original system with general separated boundary conditions is extended to a system on a larger interval with Dirichlet boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0145" target="_blank" >GA201/07/0145: Difference equations and dynamic equations on time scales II</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J. Difference Equ. Appl.
ISSN
1023-6198
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—