Eigenvalue and oscillation theorems for time scale symplectic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00049401" target="_blank" >RIV/00216224:14310/11:00049401 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Eigenvalue and oscillation theorems for time scale symplectic systems
Original language description
In this paper we study eigenvalue and oscillation properties of time scale symplectic systems with Dirichlet boundary conditions. The focus is on deriving the so-called oscillation theorems for these systems, which relate the number of finite eigenvaluesof the system with the number of proper (or generalized) focal points of the principal solution of the system. This amounts to defining and developing the central notions of finite eigenvalues and proper focal points for the time scale environment. We establish the traditional geometric properties of finite eigenvalues and eigenfunctions enjoyed by self-adjoint linear systems. We assume no controllability or normality of the system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Dynamical Systems and Differential Equations
ISSN
1752-3583
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
48
Pages from-to
84-131
UT code for WoS article
—
EID of the result in the Scopus database
—