Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057204" target="_blank" >RIV/00216224:14310/12:00057204 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201100172" target="_blank" >http://dx.doi.org/10.1002/mana.201100172</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201100172" target="_blank" >10.1002/mana.201100172</a>
Alternative languages
Result language
angličtina
Original language name
Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter
Original language description
In this paper, we consider linear Hamiltonian differential systems which depend in general nonlinearly on the spectral parameter and with Dirichlet boundary conditions. Our results generalize the known theory of linear Hamiltonian systems in two respects. Namely, we allow nonlinear dependence of the coefficients on the spectral parameter and at the same time we do not impose any controllability and strict normality assumptions. We introduce the notion of a finite eigenvalue and prove the oscillation theorem relating the number of finite eigenvalues which are less than or equal to a given value of the spectral parameter with the number of proper focal points of the principal solution of the system in the considered interval. We also define the corresponding geometric multiplicity of finite eigenvalues in terms of finite eigenfunctions and prove that the algebraic and geometric multiplicities coincide.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GC201%2F09%2FJ009" target="_blank" >GC201/09/J009: Oscillation and spectral theory of differential and difference systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
285
Issue of the periodical within the volume
11-12
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1343-1356
UT code for WoS article
000307008700006
EID of the result in the Scopus database
—