All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057204" target="_blank" >RIV/00216224:14310/12:00057204 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201100172" target="_blank" >http://dx.doi.org/10.1002/mana.201100172</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201100172" target="_blank" >10.1002/mana.201100172</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter

  • Original language description

    In this paper, we consider linear Hamiltonian differential systems which depend in general nonlinearly on the spectral parameter and with Dirichlet boundary conditions. Our results generalize the known theory of linear Hamiltonian systems in two respects. Namely, we allow nonlinear dependence of the coefficients on the spectral parameter and at the same time we do not impose any controllability and strict normality assumptions. We introduce the notion of a finite eigenvalue and prove the oscillation theorem relating the number of finite eigenvalues which are less than or equal to a given value of the spectral parameter with the number of proper focal points of the principal solution of the system in the considered interval. We also define the corresponding geometric multiplicity of finite eigenvalues in terms of finite eigenfunctions and prove that the algebraic and geometric multiplicities coincide.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GC201%2F09%2FJ009" target="_blank" >GC201/09/J009: Oscillation and spectral theory of differential and difference systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    285

  • Issue of the periodical within the volume

    11-12

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    14

  • Pages from-to

    1343-1356

  • UT code for WoS article

    000307008700006

  • EID of the result in the Scopus database