All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134063" target="_blank" >RIV/00216224:14310/23:00134063 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/mana.202000434" target="_blank" >https://doi.org/10.1002/mana.202000434</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202000434" target="_blank" >10.1002/mana.202000434</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter

  • Original language description

    In this paper, we consider two linear Hamiltonian differential systems that depend in general nonlinearly on the spectral parameter lambda and with Dirichlet boundary conditions. For the Hamiltonian problems, we do not assume any controllability and strict normality assumptions and also omit the classical Legendre condition for their Hamiltonians. The main result of the paper, the relative oscillation theorem, relates the difference of the numbers of finite eigenvalues of the two problems in the intervals (-infinity,beta]$(-infty , beta ]$ and (-infinity,alpha]$(-infty , alpha ]$, respectively, with the so-called oscillation numbers associated with the Wronskian of the principal solutions of the systems evaluated for lambda=alpha$lambda =alpha$ and lambda=beta$lambda =beta$. As a corollary to the main result, we prove the renormalized oscillation theorems presenting the number of finite eigenvalues of one single problem in (alpha,beta]$(alpha ,beta ]$. The consideration is based on the comparative index theory applied to the continuous case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    296

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    21

  • Pages from-to

    196-216

  • UT code for WoS article

    000876538800001

  • EID of the result in the Scopus database

    2-s2.0-85125516106