Oscillation theorems for symplectic difference systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F07%3A00020334" target="_blank" >RIV/00216224:14310/07:00020334 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Oscillation theorems for symplectic difference systems
Original language description
We consider symplectic difference systems involving a spectral parameter, together with the Dirichlet boundary conditions. The main result of the paper is a discrete version of the so-called oscillation theorem which relates the number of finite eigenvalues less than a given number to the number of focal points of the principal solution of the symplectic system. In two recent papers the same problem was treated and an essential ingredient was to establish the concept of the multiplicity of a focal point. But there was still a rather restrictive condition needed, which is eliminated here by using the concept of finite eigenvalues (or zeros) from the theory of matrix pencils.
Czech name
Oscilační věty pro symplektické diferenční systémy
Czech description
Napíšu později.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F04%2F0580" target="_blank" >GA201/04/0580: Difference equations and dynamic equations on time scales</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J. Difference Equ. Appl.
ISSN
1023-6198
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
585-605
UT code for WoS article
—
EID of the result in the Scopus database
—