Asymptotic behaviour of a two-dimensional differential system with nonconstant delay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00040538" target="_blank" >RIV/00216224:14310/10:00040538 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic behaviour of a two-dimensional differential system with nonconstant delay
Original language description
The asymptotic behaviour and stability properties are studied for a real two-dimensional system with a nonconstant delay. The method of investigation is based on the transformation of the considered real system to one equation with complex-valued coefficients. Stability and asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional. The results generalize the great part of the results of J. Kalas and L. Barakova [J. Math. Anal. Appl. 269(1) (2002), 278-300]for two-dimensional systems with a constant delay.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1163401" target="_blank" >IAA1163401: Limit properties of solutions of differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
283/2010
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
—
UT code for WoS article
000278819600007
EID of the result in the Scopus database
—