Asymptotic behaviour of solutions of real two-dimensional differential system with nonconstant delay in an unstable case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057247" target="_blank" >RIV/00216224:14310/12:00057247 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic behaviour of solutions of real two-dimensional differential system with nonconstant delay in an unstable case
Original language description
The asymptotic behaviour for the solutions of a real two-dimensional system with a bounded nonconstant delay is studied under the assumption of instability. Our results improve and complement previous results by J. Kalas, where the sufficient conditionsassuring the existence of bounded solutions or solutions tending to origin for t approaching infinity are given. The method of investigation is based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0469" target="_blank" >GA201/08/0469: Oscillatory and asymptotic properties of solutions of differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
8
Country of publishing house
HU - HUNGARY
Number of pages
19
Pages from-to
1-19
UT code for WoS article
000299620000001
EID of the result in the Scopus database
—