Symplectic structure of Jacobi systems on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00040560" target="_blank" >RIV/00216224:14310/10:00040560 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Symplectic structure of Jacobi systems on time scales
Original language description
In this paper we study the structure of the Jacobi system for optimal control problems on time scales. Under natural and minimal invertibility assumptions on the coefficients we prove that the Jacobi system is a time scale symplectic system and not necessarily a Hamiltonian system. These new invertibility conditions are weaker than those considered in the current literature. This shows that the theory of time scale symplectic systems, rather than the theory of linear Hamiltonian systems, is fundamentalfor optimal control problems. Our results in this paper are new even for the Jacobi equations arising in the time scale calculus of variation and, in particular, for the discrete time calculus of variations and optimal control problems. We also show thatnonlinear time scale Hamiltonian systems possess symplectic structure, that is, the Jacobian of the evolution mapping satisfies a time scale symplectic system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Difference Equations
ISSN
0973-6069
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
1
Country of publishing house
IN - INDIA
Number of pages
27
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—