New results for time reversed symplectic dynamic systems and quadratic functionals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057205" target="_blank" >RIV/00216224:14310/12:00057205 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
New results for time reversed symplectic dynamic systems and quadratic functionals
Original language description
In this paper, we examine time scale symplectic (or Hamiltonian) systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresponding classical theory for time reversed discrete symplectic systems, as well as they complete the recently developed theory of time scale symplectic systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
15
Country of publishing house
HU - HUNGARY
Number of pages
11
Pages from-to
1-11
UT code for WoS article
—
EID of the result in the Scopus database
—