Parabolic symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00043569" target="_blank" >RIV/00216224:14310/10:00043569 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Parabolic symmetric spaces
Original language description
We study here systems of symmetries on |1|-graded parabolic geometries. We are interested in smooth systems of symmetries, and we discuss non-flat homogeneous |1|-graded geometries. We show the existence of an invariant admissible affine connection underquite weak condition on the system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Global Analysis and Geometry
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
—
UT code for WoS article
000273587500003
EID of the result in the Scopus database
—