All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One component of the curvature tensor of a Lorentzian manifold

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00043842" target="_blank" >RIV/00216224:14310/10:00043842 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    One component of the curvature tensor of a Lorentzian manifold

  • Original language description

    The holonomy algebra $g$ of an $n+2$-dimensional Lorentzian manifold $(M,g)$ admitting a parallel distribution of isotropic lines is contained in the subalgebra $simil(n)=(Realoplusso(n))zrReal^nsubsetso(1,n+1)$. An important invariant of $g$ is its $so(n)$-projection $hsubsetso(n)$, which is a Riemannian holonomy algebra. One component of the curvature tensor of the manifold belongs to the space $P(h)$ consisting of linear maps from $Real^n$ to $h$ satisfying an identity similar to the Bianchi one. In the present paper the spaces $P(h)$ are computed for each possible $h$. This gives the complete description of the values of the curvature tensor of the manifold $(M,g)$. These results can be applied e.g. to the holonomy classification of the Einstein Lorentzian manifolds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP201%2F09%2FP039" target="_blank" >GP201/09/P039: Holonomy of Riemannian supermanifolds and related geometric structures</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geometry and Physics

  • ISSN

    0393-0440

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    IT - ITALY

  • Number of pages

    971

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database