An algebraic approach to physical scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00043895" target="_blank" >RIV/00216224:14310/10:00043895 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An algebraic approach to physical scales
Original language description
This paper is aimed at introducing an algebraic model for physical scales and units of measurement. This goal is achieved by means of the concept of ``positive space" and its rational powers. Positive spaces are ``semi--vector spaces'' on which the groupof positive real numbers acts freely and transitively through the scalar multiplication. Their tensor multiplication with vector spaces yields ``scaled spaces'' that are suitable to describe spaces with physical dimensions mathematically. We also deal with scales regarded as fields over a given background e.g., spacetime.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F0523" target="_blank" >GA201/05/0523: Geometric structures on fibered manifolds</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Applicandae Mathematicae
ISSN
0167-8019
e-ISSN
—
Volume of the periodical
110
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
28
Pages from-to
—
UT code for WoS article
000276865800015
EID of the result in the Scopus database
—