All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Wavelet Matrix Compression for Differential Equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F11%3A%230000792" target="_blank" >RIV/46747885:24510/11:#0000792 - isvavai.cz</a>

  • Result on the web

    <a href="http://proceedings.aip.org/resource/2/apcpcs/1389/1/1574_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1389/1/1574_1?isAuthorized=no</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.3637931" target="_blank" >10.1063/1.3637931</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Wavelet Matrix Compression for Differential Equations

  • Original language description

    The design of most adaptive wavelet methods for solving differential equations follows a general concept proposed by A. Cohen, W. Dahmen and R. DeVore in [5, 6]. The essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l2 problem, finding of the convergent iteration process for the l2 problem and finally derivation of its finite dimensional version which works with an inexact right hand side and approximate matrix-vector multiplication. In ourcontribution, we shortly review all these parts with emphasis on the approximate matrix-vector multiplication. Efficient approximation of matrix-vector multiplication is enabled by an off-diagonal decay of entries of the wavelet stiffness matrix and bydecay of entries of load vector in wavelet coordinates. Besides an usual truncation in scale, we apply here also a truncation in space to compress wavelet stiffness matrices efficiently. At the end, we show some numerical experiments.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP201%2F09%2FP641" target="_blank" >GP201/09/P641: Wavelet adaptive methods with stable bases</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011

  • ISBN

    978-0-7354-0956-9

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1574-1577

  • Publisher name

    American Institute of Physics

  • Place of publication

    Melville, New York

  • Event location

    Halkidiki, (Greece)

  • Event date

    Jan 1, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    302239800378