Approximate multiplication in adaptive wavelet methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230001005" target="_blank" >RIV/46747885:24510/12:#0001005 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.2478%2Fs11533-013-0216-x" target="_blank" >http://link.springer.com/article/10.2478%2Fs11533-013-0216-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/s11533-013-0216-x" target="_blank" >10.2478/s11533-013-0216-x</a>
Alternative languages
Result language
angličtina
Original language name
Approximate multiplication in adaptive wavelet methods
Original language description
Cohen, Dahmen and DeVore designed in [Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 2001, 70(233), 27?75] and [Adaptive wavelet methods IIbeyond the elliptic case, Found. Comput. Math., 2002, 2(3), 203?245] a general concept for solving operator equations. Its essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l 2-problem, finding the convergent iteration process for the l 2-problem and finally using its finite dimensional approximation which works with an inexact right-hand side and approximate matrix-vector multiplication. In our contribution, we pay attention to approximate matrix-vector multiplication which is enabled by an off-diagonal decayof entries of the wavelet stiffness matrices. We propose a more efficient technique which better utilizes actual decay of matrix and vector entries and we also prove that this multiplication algorithm is asymptotically optimal in the sens
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP641" target="_blank" >GP201/09/P641: Wavelet adaptive methods with stable bases</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS
ISSN
1895-1074
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
5
Country of publishing house
PL - POLAND
Number of pages
12
Pages from-to
972-983
UT code for WoS article
316284500014
EID of the result in the Scopus database
—