Effective Implementation of Wavelet Galerkin Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000823" target="_blank" >RIV/46747885:24510/12:#0000823 - isvavai.cz</a>
Result on the web
<a href="http://proceedings.aip.org/resource/2/apcpcs/1497/1/107_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1497/1/107_1?isAuthorized=no</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4766773" target="_blank" >10.1063/1.4766773</a>
Alternative languages
Result language
angličtina
Original language name
Effective Implementation of Wavelet Galerkin Method
Original language description
It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Delta u = f on hypercube with homogeneous Dirichlet boundary conditions. In ourimplementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12)
ISBN
978-0-7354-1111-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
107-112
Publisher name
AMER INST PHYSICS
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Sozopol, BULGARIA
Event date
Dec 6, 2012
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
312260000014