All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Matrix-Vector Multiplication in Adaptive Wavelet Methods

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F11%3A%230000787" target="_blank" >RIV/46747885:24510/11:#0000787 - isvavai.cz</a>

  • Result on the web

    <a href="http://proceedings.aip.org/resource/2/apcpcs/1410/1/147_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1410/1/147_1?isAuthorized=no</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.3664365" target="_blank" >10.1063/1.3664365</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Matrix-Vector Multiplication in Adaptive Wavelet Methods

  • Original language description

    Wavelet based methods are an established tool in signal and image processing and a promising tool for the numerical solution of operator equations. They have namely some interesting properties which may provide an advantage over classical methods. It iswell-known fact that representations of smooth functions and also representations of a wide class of operators are sparse in wavelet coordinates. Further advantage of wavelet methods consists in the existence of a diagonal preconditioner. The condition number of the preconditioned stiffness matrices does not depend on the size of matrices. Although the stiffness matrices in wavelet coordinates are only quasi sparse, an approximate multiplication of these matrices with given sparse vectors can be performed in the linear complexity. These are crucial parts to design efficient adaptive wavelet schemes. In this contribution, we focus on biorthogonal spline wavelets and we compare different approximate matrix-vector multiplication techniques

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP201%2F09%2FP641" target="_blank" >GP201/09/P641: Wavelet adaptive methods with stable bases</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '11)

  • ISBN

    978-0-7354-0984-2

  • ISSN

  • e-ISSN

  • Number of pages

    395

  • Pages from-to

    147-154

  • Publisher name

    American Institute of Physics

  • Place of publication

    Melville, New York

  • Event location

    Sozopol, Bulgaria

  • Event date

    Jan 1, 2011

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    301975000015