Matrix-Vector Multiplication in Adaptive Wavelet Methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F11%3A%230000787" target="_blank" >RIV/46747885:24510/11:#0000787 - isvavai.cz</a>
Result on the web
<a href="http://proceedings.aip.org/resource/2/apcpcs/1410/1/147_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1410/1/147_1?isAuthorized=no</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.3664365" target="_blank" >10.1063/1.3664365</a>
Alternative languages
Result language
angličtina
Original language name
Matrix-Vector Multiplication in Adaptive Wavelet Methods
Original language description
Wavelet based methods are an established tool in signal and image processing and a promising tool for the numerical solution of operator equations. They have namely some interesting properties which may provide an advantage over classical methods. It iswell-known fact that representations of smooth functions and also representations of a wide class of operators are sparse in wavelet coordinates. Further advantage of wavelet methods consists in the existence of a diagonal preconditioner. The condition number of the preconditioned stiffness matrices does not depend on the size of matrices. Although the stiffness matrices in wavelet coordinates are only quasi sparse, an approximate multiplication of these matrices with given sparse vectors can be performed in the linear complexity. These are crucial parts to design efficient adaptive wavelet schemes. In this contribution, we focus on biorthogonal spline wavelets and we compare different approximate matrix-vector multiplication techniques
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP641" target="_blank" >GP201/09/P641: Wavelet adaptive methods with stable bases</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '11)
ISBN
978-0-7354-0984-2
ISSN
—
e-ISSN
—
Number of pages
395
Pages from-to
147-154
Publisher name
American Institute of Physics
Place of publication
Melville, New York
Event location
Sozopol, Bulgaria
Event date
Jan 1, 2011
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
301975000015