Adaptive wavelet method for elliptic equations in two and three dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F09%3A%230000215" target="_blank" >RIV/46747885:24510/09:#0000215 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Adaptive wavelet method for elliptic equations in two and three dimensions
Original language description
In this contribution, we deal with some well-known concepts for the numerical treatment of elliptic operator equations by means of adaptive wavelet methods. We are particularly interested in the approximation of the unknown solution which should correspond to the best N-term approximation, and the associated computational work should be proportional to the number of unknowns. We provide a short review of the fundamental properties of elliptic operators in wavelet coordinates and the numerical realization of the essential ingredients for adaptive wavelet schemes: adaptive thresholding, the approximation of right-hand sides, and the approximate multiplication of biinfinite compressible matrices with finite vectors. Numerical examples are presented for the Poisson equation in two and three spatial dimensions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Matematika na vysokých školách (Mechanika tekutin)
ISBN
9788001043752
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
pobočka JČMF v Praze a ČVUT v Praze
Place of publication
Praha
Event location
Herbertov
Event date
Aug 31, 2009
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—