Adaptive wavelet methods - Matrix-vector multiplication
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230001008" target="_blank" >RIV/46747885:24510/12:#0001008 - isvavai.cz</a>
Result on the web
<a href="http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4771823" target="_blank" >http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4771823</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4771823" target="_blank" >10.1063/1.4771823</a>
Alternative languages
Result language
angličtina
Original language name
Adaptive wavelet methods - Matrix-vector multiplication
Original language description
The design of most adaptive wavelet methods for elliptic partial differential equations follows a general concept proposed by A. Cohen, W. Dahmen and R. DeVore in [3, 4]. The essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l 2 problem, finding of the convergent iteration process for the l 2 problem and finally derivation of its finite dimensional version which works with an inexact right hand side and approximate matrix-vector multiplications. In our contribution, we shortly review all these parts and wemainly pay attention to approximate matrix-vector multiplications. Effective approximation of matrix-vector multiplications is enabled by an off-diagonal decay of entries of the wavelet stiffness matrix. We propose here a new approach which better utilize actual decay of matrix entries.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M06047" target="_blank" >1M06047: Research Center for Quality and Reliability of Production</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009)
ISBN
—
ISSN
0094-243X
e-ISSN
—
Number of pages
5
Pages from-to
832-836
Publisher name
AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Rhodes, GREECE
Event date
Sep 9, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
317113600125