Generalized Calabi-Yau metric and Generalized Monge-Ampere equation.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00047447" target="_blank" >RIV/00216224:14310/10:00047447 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized Calabi-Yau metric and Generalized Monge-Ampere equation.
Original language description
In the neighborhood of a regular point, generalized Kahler geometry admits a description in terms of a single real function, the generalized Kahler potential. We study the local conditions for a generalized Kahler manifold to be a generalized Calabi-Yaumanifold and we derive a non-linear PDE that the generalized Kahler potential has to satisfy for this to be true. This non-linear PDE can be understood as a generalization of the complex Monge-Ampere equation and its solutions give supergravity solutionswith metric, dilaton and H-field.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BF - Elementary particle theory and high energy physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF HIGH ENERGY PHYSICS
ISSN
1126-6708
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
—
UT code for WoS article
000282368500006
EID of the result in the Scopus database
—