Piecewise Testable Languages via Combinatorics on Words
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00050145" target="_blank" >RIV/00216224:14310/11:00050145 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2011.06.013" target="_blank" >http://dx.doi.org/10.1016/j.disc.2011.06.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2011.06.013" target="_blank" >10.1016/j.disc.2011.06.013</a>
Alternative languages
Result language
angličtina
Original language name
Piecewise Testable Languages via Combinatorics on Words
Original language description
A regular language L over an alphabet A is called piecewise testable if it is a finite Boolean combination of languages of the form B a1 B a2 B ... B al B, where a1,... ,al are letters from A and B is the set of all words over A. An effective characterization of piecewise testable languages was given in 1972 by Simon who proved that a language L is piecewise testable if and only if its syntactic monoid is J-trivial. Nowadays, there exist several proofs of this result based on various methods from algebraic theory of regular languages. Our contribution adds a new purely combinatorial proof.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
311
Issue of the periodical within the volume
20
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
4
Pages from-to
2124-2127
UT code for WoS article
000295202100004
EID of the result in the Scopus database
—