All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

State smearing theorems and the existence of states on some atomic lattice effect algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00055103" target="_blank" >RIV/00216224:14310/11:00055103 - isvavai.cz</a>

  • Result on the web

    <a href="http://logcom.oxfordjournals.org/content/21/6/863.full.pdf+html?sid=5b6ae981-3558-4c31-9860-dab7a1e4b713" target="_blank" >http://logcom.oxfordjournals.org/content/21/6/863.full.pdf+html?sid=5b6ae981-3558-4c31-9860-dab7a1e4b713</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/logcom/exp018" target="_blank" >10.1093/logcom/exp018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    State smearing theorems and the existence of states on some atomic lattice effect algebras

  • Original language description

    The existence of states and probabilities on effect algebras as logical structures when events may be non-compatible, unsharp, fuzzy or imprecise is still an open question. Only a few families of effect algebras possessing states are known. We are goingto show some families of effect algebras, the existence of a pseudocomplementation on which implies the existence of states. Namely, those are Archimedean atomic lattice effect algebras, which are sharply dominating or s-compactly generated or extendableto complete lattice effect algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of logic and computation

  • ISSN

    0955-792X

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    863-882

  • UT code for WoS article

    000297376200001

  • EID of the result in the Scopus database