State smearing theorems and the existence of states on some atomic lattice effect algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00055103" target="_blank" >RIV/00216224:14310/11:00055103 - isvavai.cz</a>
Result on the web
<a href="http://logcom.oxfordjournals.org/content/21/6/863.full.pdf+html?sid=5b6ae981-3558-4c31-9860-dab7a1e4b713" target="_blank" >http://logcom.oxfordjournals.org/content/21/6/863.full.pdf+html?sid=5b6ae981-3558-4c31-9860-dab7a1e4b713</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exp018" target="_blank" >10.1093/logcom/exp018</a>
Alternative languages
Result language
angličtina
Original language name
State smearing theorems and the existence of states on some atomic lattice effect algebras
Original language description
The existence of states and probabilities on effect algebras as logical structures when events may be non-compatible, unsharp, fuzzy or imprecise is still an open question. Only a few families of effect algebras possessing states are known. We are goingto show some families of effect algebras, the existence of a pseudocomplementation on which implies the existence of states. Namely, those are Archimedean atomic lattice effect algebras, which are sharply dominating or s-compactly generated or extendableto complete lattice effect algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of logic and computation
ISSN
0955-792X
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
863-882
UT code for WoS article
000297376200001
EID of the result in the Scopus database
—