Weakly ordered partial commutative group of self-adjoint linear operators densely defined on Hilbert space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00059436" target="_blank" >RIV/00216224:14310/11:00059436 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weakly ordered partial commutative group of self-adjoint linear operators densely defined on Hilbert space
Original language description
We continue in a direction of describing an algebraic structure of linear operators on infinite-dimensional complex Hilbert space H. In [Paseka, J.? ?Janda, J.: More on PT-symmetry in (generalized) effect algebras and partial groups, Acta Polytech. 51 (2011), 65?72] there is introduced the notion of a weakly ordered partial commutative group and showed that linear operators on H with restricted addition possess this structure. In our work, we are investigating the set of self-adjoint linear operators onH showing that with more restricted addition it also has the structure of a weakly ordered partial commutative group.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Tatra Mountains Mathematical Publications
ISSN
1210-3195
e-ISSN
—
Volume of the periodical
Volume 50
Issue of the periodical within the volume
3
Country of publishing house
SK - SLOVAKIA
Number of pages
16
Pages from-to
63-78
UT code for WoS article
—
EID of the result in the Scopus database
—