State complexity of operations on two-way finite automata over a unary alphabet
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057833" target="_blank" >RIV/00216224:14310/12:00057833 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2012.04.010" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2012.04.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2012.04.010" target="_blank" >10.1016/j.tcs.2012.04.010</a>
Alternative languages
Result language
angličtina
Original language name
State complexity of operations on two-way finite automata over a unary alphabet
Original language description
The paper determines the number of states in two-way deterministic finite automata (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of basic language-theoretic operations on 2DFAs with a certain numberof states. It is proved that (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m+n and m+n+1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m+n and 2m+n+4 states; (iii) Kleene star of an n-state 2DFA, (g(n)+O(n))^2 states, where g is Landau's function; (iv) k-th power of an n-state 2DFA, between (k-1)g(n)-k and k(g(n)+n) states; (v) concatenation of an m-state 2DFA and an n-state 2DFA, exp((1+O(1))sqrt((m+n)ln(m+n))) states.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
449
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
106-118
UT code for WoS article
000306771300010
EID of the result in the Scopus database
—