On the inverse variational problem in nonholonomic mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057849" target="_blank" >RIV/00216224:14310/12:00057849 - isvavai.cz</a>
Alternative codes found
RIV/61988987:17310/12:A140168Y
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the inverse variational problem in nonholonomic mechanics
Original language description
The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of rst order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with the recently found constraint Helmholtz conditions this result completes basic geometric properties of constraint variational systems. A few examples of constraint variational systems are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematics
ISSN
1804-1388
e-ISSN
—
Volume of the periodical
18/2010
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
22
Pages from-to
47-68
UT code for WoS article
—
EID of the result in the Scopus database
—