Geometric mechanics on nonholonomic submanifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F10%3AA12013M3" target="_blank" >RIV/61988987:17310/10:A12013M3 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Geometric mechanics on nonholonomic submanifolds
Original language description
In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differentialsystem on the constraint manifold.The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical systems subject to general (possibly nonlinear) nonholonomic constraints, and admit a straightforward generalization to higher order mechanics and field theory. In particular, we are concerned with the following topics: the geometry of nonholonomic constraints, equations ofmotion of nonholonomic systems on constraint manifolds and their geometric meaning, a nonholonomic variational principle, symmetries, a nonholonomic Noether theorem, regularity, and nonholonomic Hamilton equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematics
ISSN
1804-1388
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
27
Pages from-to
51-77
UT code for WoS article
—
EID of the result in the Scopus database
—