Symmetries and currents in nonholonomic mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00074352" target="_blank" >RIV/00216224:14310/14:00074352 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Symmetries and currents in nonholonomic mechanics
Original language description
In this paper we derive general equations for constraint Noether- -type symmetries of a rst order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is basedon a consistent and very ef- fective geometrical theory of nonholonomic constrained systems on bred manifolds and their jet prolongations, rst presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system sub- ject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation gen- erator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematics
ISSN
1804-1388
e-ISSN
—
Volume of the periodical
22/2014
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
26
Pages from-to
159-184
UT code for WoS article
—
EID of the result in the Scopus database
—