All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Symmetries and currents in nonholonomic mechanics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00074352" target="_blank" >RIV/00216224:14310/14:00074352 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Symmetries and currents in nonholonomic mechanics

  • Original language description

    In this paper we derive general equations for constraint Noether- -type symmetries of a rst order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is basedon a consistent and very ef- fective geometrical theory of nonholonomic constrained systems on bred manifolds and their jet prolongations, rst presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system sub- ject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation gen- erator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematics

  • ISSN

    1804-1388

  • e-ISSN

  • Volume of the periodical

    22/2014

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    26

  • Pages from-to

    159-184

  • UT code for WoS article

  • EID of the result in the Scopus database