Uniform motions in central fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801KFL" target="_blank" >RIV/61988987:17310/17:A1801KFL - isvavai.cz</a>
Alternative codes found
RIV/61989100:27600/17:10238202
Result on the web
<a href="http://dx.doi.org/10.3934/jgm.2017004" target="_blank" >http://dx.doi.org/10.3934/jgm.2017004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/jgm.2017004" target="_blank" >10.3934/jgm.2017004</a>
Alternative languages
Result language
angličtina
Original language name
Uniform motions in central fields
Original language description
We present a theoretical problem of uniform motions, i.e. motions with constant magnitude of the velocity in central fields as a nonholonomic system of one particle with a nonlinear constraint. The concept of the article is in analogy with the recent paper [21]. The problem is analysed from the kinematic and dynamic point of view. The corresponding reduced equation of motion in the Newtonian central gravitational field is solved numerically. Appropriate trajectories for suitable initial conditions are presented. Symmetries and conservation laws are investigated using the concept of constrained Noetherian symmetry [9] and the corresponding constrained Noetherian conservation law.Isotachytonic version of the conservation law of mechanical energy is found as one of the corresponding constraint Noetherian conservation law of this nonholonomic system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometric Mechanics
ISSN
1941-4889
e-ISSN
1941-4897
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
40
Pages from-to
91-130
UT code for WoS article
000397806900004
EID of the result in the Scopus database
2-s2.0-85016771196