Geometric structures invariant to symmetries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00058001" target="_blank" >RIV/00216224:14310/12:00058001 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5817/CZ.MUNI.M210-6010-2012" target="_blank" >http://dx.doi.org/10.5817/CZ.MUNI.M210-6010-2012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/CZ.MUNI.M210-6010-2012" target="_blank" >10.5817/CZ.MUNI.M210-6010-2012</a>
Alternative languages
Result language
angličtina
Original language name
Geometric structures invariant to symmetries
Original language description
The aim of this book is to generalize symmetric spaces to several geometric strctures. The first and third chapter of this work contain description of several geometric structures, for which we want to define the symmetries. This is done in the second chapter and at the end end of the third chapter. The second chapter also explains, how the classical symmetric spaces fit in our approach, and investigates geometric structures on symmetric spaces. In the fourth and fifth chapters, we investigate and construct examples of symmetric parabolic geometries in the simplest cases. In fact, we obtain classification of non-flat symmetric AHS-structures and parabolic contact structures in the case when the groups generated by the symmetries are semisimple, and weexplicitly construct many of them.
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GD201%2F09%2FH012" target="_blank" >GD201/09/H012: Algebraic and geometric methods and structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
9788021060104
Number of pages
91
Publisher name
Masaryk University
Place of publication
Brno
UT code for WoS book
—