Influence of variable interactions versus segmentation in credit scoring: a case study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00060319" target="_blank" >RIV/00216224:14310/12:00060319 - isvavai.cz</a>
Result on the web
<a href="http://www.sas.com/events/analytics/europe/pres/rezac.pdf" target="_blank" >http://www.sas.com/events/analytics/europe/pres/rezac.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Influence of variable interactions versus segmentation in credit scoring: a case study
Original language description
Credit scoring is a set of predictive models and their underlying techniques that aid financial institutions in the granting of credit. These techniques decide who will get credit, how much credit they should get, and what further strategies will enhancethe profitability of borrowers to lenders. The industry standard for modeling the probability of client default is the logistic regression. However, details such as inclusion of interactions of predictors or segmentation of given data sample may determine the success. The paper will present the influence of inclusion of variable interactions versus segmentation on quality of a credit scoring model.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů