A Dynamic Effect Algebras with dual operation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00062908" target="_blank" >RIV/00216224:14310/12:00062908 - isvavai.cz</a>
Result on the web
<a href="http://ma.fme.vutbr.cz/archiv/1_1/79_89.pdf" target="_blank" >http://ma.fme.vutbr.cz/archiv/1_1/79_89.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Dynamic Effect Algebras with dual operation
Original language description
Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their denition Chajda and Kolařík presented the denition of tense operators for lattice effect algebras. Chajda and Paseka tackled the problem of axiomatizing tense operators on an effect algebra by introducing the notion of a partial dynamic effect algebra. They also gave representation theorems for dynamic effect algebras. We continue to extend their work for partial S-dynamic effect algebras i.e. in the case when tense operators satisfy required conditions also for the dual effect algebraic operation . We show that whenever tense operators are total our stronger notion coincides with their denition. We give also a representation theorem for partial S-dynamic effectalgebras and its version for strict dynamic effect algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICS FOR APPLICATIONS
ISSN
1805-3610
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
79-89
UT code for WoS article
—
EID of the result in the Scopus database
—