ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00063706" target="_blank" >RIV/00216224:14310/12:00063706 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS
Original language description
A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show thata generalized effect algebra is representable in the operator generalized effect algebra G(D)(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riecanova and Zajac. Further, any operator generalized effect algebra G(D) (H) possesses an order determining set of generalized states.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reports on Mathematical Physics
ISSN
0034-4877
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
375-384
UT code for WoS article
000313085600008
EID of the result in the Scopus database
—