Extensions of Ordering Sets of States from Effect Algebras onto Their MacNeille Completions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00068751" target="_blank" >RIV/00216224:14310/13:00068751 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10773-013-1532-4" target="_blank" >http://link.springer.com/article/10.1007%2Fs10773-013-1532-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-013-1532-4" target="_blank" >10.1007/s10773-013-1532-4</a>
Alternative languages
Result language
angličtina
Original language name
Extensions of Ordering Sets of States from Effect Algebras onto Their MacNeille Completions
Original language description
In "Riečanová Z, Zajac M.: Hilbert Space Effect-Representations of Effect Algebras" it was shown that an effect algebra $E$ with an ordering set ${cal M}$ of states can by embedded into a Hilbert space effect algebra ${cal E}(l_2({cal M}))$. We consider the problem when its effect algebraic MacNeille completion $hat{E}$ can be also embedded into the same Hilbert space effect algebra ${cal E}(l_2({cal M}))$. That is when the ordering set $cal M$ of states on $E$ can be be extended to an ordering set of states on $hat{E}$. We give an answer for all Archimedean MV-effect algebras and Archimedean atomic lattice effect algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
2171-2180
UT code for WoS article
000318373700046
EID of the result in the Scopus database
—