Conformal field theories in six-dimensional twistor space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00064685" target="_blank" >RIV/00216224:14310/12:00064685 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.geomphys.2012.08.001" target="_blank" >http://dx.doi.org/10.1016/j.geomphys.2012.08.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2012.08.001" target="_blank" >10.1016/j.geomphys.2012.08.001</a>
Alternative languages
Result language
angličtina
Original language name
Conformal field theories in six-dimensional twistor space
Original language description
This article gives a study of the higher-dimensional Penrose transform between conformally invariant massless fields on space-time and cohomology classes on twistor space, where twistor space is defined to be the space of projective pure spinors of the conformal group. We focus on the six-dimensional case in which twistor space is the 6-quadric Q in CP7 with a view to applications to the self-dual (0, 2)-theory. We show how spinor-helicity momentum eigenstates have canonically defined distributional representatives on twistor space (a story that we extend to arbitrary dimension). These yield an elementary proof of the surjectivity of the Penrose transform. We give a direct construction of the twistor transform between the two different representationsof massless fields on twistor space (H-2 and H-3) in which the H(3)s arise as obstructions to extending the H(2)s off Q into CP7.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
12
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
2353-2375
UT code for WoS article
000312362000005
EID of the result in the Scopus database
—